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another structure, the situation may be reversed. It is 
therefore useful to have available a variety of 
methods incorporating as many different approaches 
as possible. The SYSTEM90 approach is quite dis- 
tinctive and we have shown that it stands compari- 
son with other existing methods in its effectiveness. 

Anyone wishing to obtain SYSTEM90, together 
with full information on its use, can do so by 
applying to HY. 
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Abstract 

Estimates for the density of periodic three- 
dimensional nets in Euclidean three-dimensional 
space (~3) are derived. The analysis assumes that the 
nets tile triply periodic hyperbolic surfaces that are 
free of self-intersections (embedded in ~3). Upper 
and lower bounds of the net density as a function of 
the average ring size on the surfaces are given. These 
geometrical relations are compared with framework 
densities of a range of silicon-rich zeolites, silica 
clathrasils and dense four-connected silicates in order 
to separate the roles of geometry and chemistry in 
setting silicate densities. The data suggest that silica 
frameworks are constrained by an approximate 
requirement of constant area per framework vertex 
in addition to the impositions of Euclidean three- 
space and are thus hyperbolic two-dimensional 
(layer) structures. 

Introduction 

Although nets have intrinsic mathematical interest 
(as 'graphs'), their geometrical characteristics are of 
relevance also to the solid state. In particular, the 
bonding topology of covalent frameworks - such as 
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silicates - can be represented by a three-dimensional 
network. This has led to a number of theoretical 
studies of three-dimensional nets and their possible 
realizations as chemical frameworks (Wells, 1977; 
Smith, 1988; O'Keeffe, 1991). Despite the universal 
use of nets to describe structures in the solid state 
(any chemistry text is replete with examples), little 
fundamental work has been done. O'Keeffe has con- 
jectured a number of challenging results and conjec- 
tures about three-dimensional nets, which suggest 
that the variety of three-dimensional nets realizable 
in Euclidean three-dimensional space is more limited 
than intuition would suggest. As yet, no procedure 
has been found for a systematic enumeration of 
three-dimensional networks (hereafter referred to as 
'nets'), so it is difficult to establish their general 
characteristics. 

Some intriguing relations between the bulk density 
of periodic nets and their topology have been 
reported. The relation between silicate densities and 
ring sizes has been reported and analysed to a limited 
extent by Stixrude & Bukowinski (1990). Nets of low 
density (number of vertices per unit volume), called 
'rare' nets, are of interest as possible structure for 
zeolites. In this context, approximate relations 
between the net density and the size of the smallest 
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rings in the net have been noticed: in general, rare 
nets have a significant proportion of small rings 
(Meier, 1986; Brunner & Meier, 1989; O'Keeffe, 
1991). Conversely, O'Keeffe's results suggest that 
dense nets contain large rings. (A 'ring' in the net is a 
closed path confined to edges of the net.) A theo- 
retical explanation of these trends remains elusive. 
An analytical result for the net density has recently 
been derived, under the twin assumptions that the 
net edges lie in a triply periodic hyperbolic surface 
(which is approximated by a triply periodic minimal 
surface) and that the area per net vertex on the 
surface (the hyperbolic surface density) is fixed for a 
single stoichiometry (e.g. SiO2), regardless of the net 
and surface topology (Hyde, Blum & Ninham, 1993; 
Hyde, 1993). This result is consistent with a qualita- 
tive trend of increasing net density with ring size. 

In this note, I adopt the two-dimensional hyper- 
bolic approach. The analysis is not confined to 
chemical frameworks; rather, I am concerned with 
the geometrical characteristics of a small selection of 
three-, four-, five- and six-connected nets. I focus on 
the net density and derive bounds for densities of 
nets as a function of the average ring size of the net 
rings that lie in the surface. 

Nets and hyperbolic surfaces 

K6nig's theorem ensures that any connected network 
can be embedded in an orientable surface (Lindsay, 
1959). Three-dimensional nets can be embedded in 
(orientable) hyperbolic surfaces, just as planar nets 
can be viewed as tilings of the plane (Hyde & 
Andersson, 1984). 

Nets that describe the edges of 'infinite' (Wells, 
1977) or 'skew' (Coxeter, 1937) polyhedra tesselate 
hyperbolic surfaces that are free of self-intersections 
and dissect space into two intertwinned labyrinths. 
These nets are generally of low density, such as many 
(four-connected) nets describing zeolite frameworks. 
For example, the nets describing the analcime and 
sodalite frameworks (Meier & Olson, 1992) can be 
drawn on the D and gyroid triply periodic minimal 
surfaces (Andersson, Hyde, Larsson & Lidin, 1988). 
In other cases, the nets lie in hyperbolic sufaces that 
are not strictly minimal surfaces, but rather parallel 
surfaces or surfaces of constant (nonzero) mean 
curvature related to minimal surfaces. 

Dense nets can be placed onto surfaces containing 
self-intersections. However, a number of these 
examples can also be placed onto intersection-free 
surfaces. For example, edges of the NbO (Wells, 
1977) and CdSO4 (O'Keeffe & Hyde, 1994) nets are 
straight lines on the D-surface and its tetragonal 
relative, the tD-surface, respectively. It is not known 
whether all nets can be placed on intersection-free 
surfaces. 

It is important to recognize that a single net can be 
embedded in a variety of (orientable) surfaces. For 
example, complementary periodic minimal surfaces 
contain the same set of straight lines (Hyde & 
Anderson, 1984), thus a net containing any subset of 
those lines can be embedded in either surface. The 
surfaces that can be reticulated by the net are topo- 
logically distinguishable, i.e. they have a different 
Euler characteristic, 2", per unit cell. (For orientable 
surfaces, 2" is given by the expression 2" = 2 -  2g. 
Here g is the genus of the surface per unit cell, which 
is equal to the number of holes in a unit cell of the 
surface that are not related by lattice translation 
vectors.) Topologists refer to a 'minimal' embedding, 
which sets the 'characteristic', T, of the net (Firby & 
Gardiner, 1991). The value of ), is equal to the 
m a x i m u m  X (i.e. the minimum genus per unit cell) 
among all surfaces that can be tesselated by the net. 
(The corresponding surface is termed the 'minimal 
surface' for the graph, not to be confused with the 
differential geometric sense of 'minimal sur faces ' -  
surfaces of zero mean curvature - used exclusively in 
this paper.) 

Once nets are realized as tesselations of hyperbolic 
surfaces, the net density can be readily related to the 
density of vertices on the surface and the curvatures 
of that surface. The surface density is related to the 
surface area of the surface and the area per net 
vertex. The link between the area per unit cell of a 
periodic hyperbolic surface, S, the Euler characteris- 
tic of the surface per unit cell, 2", and the unit-cell 
volume, V, can be neatly characterized by the dimen- 
sionless variable, which I call the 'homogeneity 
index', H: 

H - 3 3 / 2 ( -  2rrx)-1/2V-l (1) 

The density of the net is the number of vertices per 
unit volume. In this note, I consider solely nets of 
equal edge length, l. The net 'rarity' r (O'Keeffe, 
1991) is defined by the relation r =- N l  3/V, where N is 
the number of net vertices per unit cell. If the scaled 
(curved surface) area per vertex in a given embedding 
surface is denoted a2 (= area per vertex/12), (1) can 
be rewritten 

or 

H = [/'23/2/(- 2rrxIN)l/2]r 

r = (H/~3/2)(  - 2 r r x / N )  ~/2. (2) 

The quantity 2 7 r x / N  is the integral (Gaussian) curva- 
ture per vertex. This is related to the average connec- 
tivity of the net, z, and the average ring size of all 
rings lying in the surface, n2. Here, I take 'rings' to 
be shortest rings on the surface. All those rings that 
cannot be contracted continuously to a point - 
remaining at all stages on the surface - are excluded. 
Thus, for example, 'collar' rings, that surround tun- 
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nels of the intersection-free hyperbolic surfaces, do 
not contribute to n2 (Hyde et al., 1993). 

Euler's relation between faces, edges and vertices 
on a (compactified) unit cell of the surface demands 

x / N  = {z + [1 - (z/2)]nz}/n2. (3) 

This yields the result 

r / H =  j?-3/2[__ 27r({z + [I - (z/2)]n2}/n2)] 1/2. (4) 

This curved two-dimensional geometrical approach 
leads to a particularly simple expression relating the 
net density to the topological characteristics of the 
net, provided the magnitudes of H and /2 can be 
found. 

For hypothetical 'homogeneous' hyperbolic sur- 
faces, whose Gaussian curvature is everywhere con- 
stant and whose mean curvature is equal to zero, H 
is equal to 3/4 (Hyde, 1992). The magnitude of the 
Gaussian curvature is dependent on the edge length, 
vertex angles and net torsion (Hyde et al., 1993). 
Thus, nets whose vertex geomery is similar for all 
vertices ('quasi-uniform' nets) are expected to lie on 
quasi-homogeneous surfaces. 

The value of/'2 is less readily estimated. In the case 
of a number of silicate, water, silicon and germanium 
frameworks, the area has been found to be approxi- 
mately constant within each chemical class, provided 
the surface has been chosen so that the value of n2 is 
minimized (i.e. X =  Y, so that the 'minimal 
embedding' is adopted) (Hyde, 1993). Equation (4) 
can be used to determine the universality of this 
finding. In this note, I consider nets in their 
maximum-vo lume  form, realized when the nets adopt 
their most symmetric embedding (O'Keeffe, 1991). 
These embeddings are expected to approach most 
nearly the assumption of homogeneity discussed 
above. 

The nets are listed in Table 1, along with associ- 
ated geometric data. The estimation of H is done as 
follows. With the assumption that the embedding 
surfaces are parallel to minimal surfaces, the 
element of area of the embedding surface, S, is 
related to the corresponding area of the associated 
minimal surface, So, and the Gaussian curvature of 
the minimal surface, K, by the equation 

S = So(1 + Kx2). 

If the average radius of curvature for the minimal 
surface is R, K = - R - 2  so 

S = S0[1 - (x/R)2]. (5) 

The hyperbolic embedding surface has two radii of 
curvature, R~ and R2, approximated by the average 
radii of the 'inner' and 'outer' tunnels on either side 
of the surface. (If the embedding surface is a minimal 
surface, these radii are of equal magnitude.) Both 
tunnel systems are spanned by the 'inner' and 'outer' 

collar rings, whose average ring sizes are denoted 
ncol 1 and n¢ol 2. These ring sizes allow estimates of the 
two radii of curvature: 

R1/R2 "" n~oll /nool 2. 

The separation between the embedding surface 
and the (parallel) minimal surface, x, can then be 
estimated, noting that R1 = ( R -  x) and R2 = (R + 
x), where the larger collar ring is nool 2. Expansion of 
R1/R2 t o  linear order gives 

(x /R)  2 -- [1 - (ncol 1/nco12)1/2] 2. (6) 

The homogeneity index for the embedding, H, is 
then related to that of the minimal surface, Ho 
(assumed to be 3), by combining (1), (5) and (6): 

H = Ho { 1 - [1 - (ncol l/ncol2)l/2] 2}3/2. (7) 

Equation (7) is an estimate, valid only for embedding 
surfaces of small mean curvature compared with the 
net edge length. 

The net densities and the square roots of the 
integral curvatures of the graphs in their 'minimal 
embeddings' are plotted in Fig. 1. 

According to (4), if the area O is independent of 
the curvatures of the embedding, the plot should be 
linear. Indeed, the graph exhibits a nearly linear 
trend over a range of curvatures. A least-squares 
linear fit of the data through the origin gives the 
approximate relation 

f2= 1.3l 2. (8) 

The presence of deviations from this relation points 
to variations in the scaled area per vertex in three- 
dimensional periodic nets in their maximum-volume 
configurations. In order to arrive at a better estimate 
of the relation between net density and ring sizes, a 
priori estimates of the area per vertex, S2, are 
required. 

Upper and lower bounds for the area per vertex 
(S2max and J'~min) c a n  be obtained by comparing the 
area of the hyperbolic embedding surface in the 
vicinity of a vertex with its planar projection onto 
the hyperbolic plane and the Euclidean (flat) plane 
respectively. 

As the Gaussian curvature becomes increasingly 
negative, the area of the embedding surface must 
increase. Consequently, 

J'~min ~-- (z l2/4)tan(7r/z)  (9) 

since the expression is equal to the area of the 
Voronoi region about each vertex (a z-gon of 
inradius l/2) in the planar embedding surface of a 
z-connected net (i.e. the area projected onto the 
Euclidean plane). 

An upper bound for the area per vertex can be 
derived by noting that the embedding surface must 
have an area smaller than that of a surface of 
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Table 1. List of three-, four-, five- and six-connected nets &cluded & this analysis 
The embedding surface is listed (italicised if it is not  minimal). Also included are the connectivity (z), the ring sizes on the surface, the 
average surface ring size (n2), the size of  the 'collar rings' (which surround tunnels and are not  spanned by the surface), n~o~, the 
homogenei ty  index (H), the scaled density (r) and r/H. 

Two-dimensional  
Net  Space group Surface z rings n2 nco~ ~ neol 2 H r r /H Source of  r 

ThSi2 I41/amd CLP 3 12.12.12 12 x§ x 0.75 0.44 0.59 (a) 
SrSi2 14132 Gyroid 3 I0.10.10 10 x x 0.75 0.35 0.47 (b) 
8.8.82t Im3m I-WP 3 8.8.8 8 x x 0.75 0.34 0.46 (a) 
4.122.122 Im3m D 3 4.12.12 7.20 x x 0.75 0.21 0.28 (a) 
Polybenzene Pn3m D 3 6.8.8 7.20 12 12 0.75 0.31 0.42 (b) 
6.82/P lm3m P 3 6.8.8 7.20 12 12 0.75 0.33 0.44 (b) 
Hyperbolic graphite Fd3m D 3 6,8 6.26 x x 0.75 0.15 0.20 (c) 
Hyperbolic graphite Im3m P 3 6,8 6.26 x x 0.75 0.14 0.19 (c) 
Hyperbolic graphite la3d Gyroid 3 6,8 6.26 x x 0.75 0.15 0.21 (c) 
Hyperbolic graphite I43m I-WP 3 5,6,8 6.20 x x 0.75 0.15 0.19 (c) 
Schwarzite D Pn3 D 3 6,7 6.23 x 2x 0.65 0.16 0.25 (d) 
Schwarzite P Ia3 P 3 6,7 6.23 x 2x 0.65 0.14 0.22 (d) 
Schwarzite G Ia3d Gyroid 3 6,7 6.23 x x 0.75 0.17 0.23 (e) 
Buckygym Fd3 D 3 6,7 6.15 x 1.7x 0.75 0.07 0.10 (/3 

CdSO4 P4Jmmc tD 4 8.8.8.8 8 8 8 0.75 1.00 1.33 (g) 
NbO Im3m D 4 6.6.6.6 6 8 8 0.75 0.75 1.00 (a) 
S* la3d Gyroid 4 6.6.6.6 6 6 6 0.75 0.69 0.92 (a) 
Diamond Fd3m - 4 6.6.6.6 6 6 6 0.75 0.65 0.86 (a) 
Lonsdaleite P63/mmc - 4 6.6.6.6 6 6 6 0.75 0.65 0.86 (a) 
CrB4 I/mmm tP 4 4.6.6.6 5.33 6 6 0.75 0.63 0.84 (a) 
CaGa204 Cmca oDb 4 4.6.6.6 5.33 6 6 0.75 0.62 0.82 (a) 
MEP:~ Pm3n - 4 - 5.08 6 6 0.75 0.58 0.77 (h) 
CAN P6Jmmc H 4 4.4.6.6 4.80 6 6 0.75 0.53 0.71 (a) 
SOD Im3m D 4 4.4.6.6 4.80 6 6 0.75 0.53 0.71 (g) 
SOD lm3m P 4 6.6.6.6 6 4 4 0.75 0.53 0.71 (a) 
AST/octadodecasil Fm3m tP 4 - 5 6 6 0.75 0.50 0.67 (a) 
GME P63/mmc H 4 4.4.4.8 4.57 6 8 0.73 0.45 0.62 (a) 
KFI lm3m I-WP 4 4.4.4.8 4.57 6 8 0.73 0.45 0.61 (a) 
LTA Pm3m P 4 4.4.6.6 4.80 4 8 0.66 0.43 0.65 (a) 
RHO Im3m P 4 4.4.4.6 4.36 8 8 0.75 0.43 0.57 (a) 
FAU Fd3m D 4 4.4.4.6 4.36 6 12 0.66 0.38 0.58 (a) 
W*8 lm3m I-WP 4 4.4.4.8 4.57 4 12 0.56 0.30 0.54 (g) 
W*4 lm3m D 4 3.8.3.12 4.57 3 12 0.49 0.20 0.40 (g) 

3.44 Pm3m P 5 3.3.3.3.4 3.75 4 8 0.66 0.60 0.92 (a) 
33.62 Fd3m D 5 3.3.3.6.6 3.75 6 12 0.66 0.44 0.67 (a) 
3.44 Fd3m D 5 3.4.4.4.4 3.75 6 6 0.75 0.71 0.95 (a) 
CaB6 Pm3m I-WP 5 8.3.3.3.8 4.00 3 6 0.66 0.43 0.65 (a) 

P/D saddle polyhedral 
skeletal net Pn3m D 6 4.4.4.4.4.4 4 6 6 0.75 1.41 1.89 (i) 

P/D saddle polyhedral 
skeletal net Im3m P 6 6.6.6.6.6.6 6 4 4 0.75 1.41 1.89 (i) 

References: (a) O'Keeffe & Hyde (1994); (b) O'Keeffe,  Adams  & Sankey (1992); (c) Terrones & Mackay  (1993); (d) Lenosky, Gonze,  
Teter & Elser (1992); (e) Mackay  & Terrones (1993); ( f )  Vanderbilt  & Tersoff  (1991); (g) O'Keeffe (1991); (h) Hyde  (1993); (i) Hyde  & 
Andersson (1984). 

t These numbers  are the extended Schlaefli symbols o f  O'Keeffe.  
:I: The three-letter codes denote zeolite nets, listed by Meier & Olson (1992). 
§ x denotes the fact that  actual tunnel ring sizes are unknown.  The ratios of  tunnel sizes are used instead. 

constant Gaussian curvature (Kn2, which is 
negative), i.e. a hyperbolic plane,* where the magni- 
tude of the Gaussian curvature (-KH2) is at least as 
large as the maximum magnitude of the Gaussian 
curvature on the embedding surface. For the hyper- 
bolic plane, the curved area (g2) is related to its 
projected area (A) onto the Euclidean plane by the 
approximate expression (Robertson, 1990) 

~ =  A[1 - (Kml2/12) + ...]. (10) 

* In fact, the area of  the hyperbolic plane is so large that  it 
cannot  be realised in ]~? without  singularities. 

For smooth hyperbolic surfaces in ~3,  the Gaussian 
curvature necessarily varies over the surface. For 
quasi-homogeneous triply periodic minimal surfaces, 
the maximum magnitude of the Gaussian curvature 
is typically 50% larger than the average value of the 
Gaussian curvature, (K), defined by 

(K) = f K d a /  f da. 
unit cell /,unit cell 

This implies the approximate relation from (10): 

O-- At1 - ((K)12/8)1. (11) 

(In fact, it turns out that the final estimate is rather 
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insensitive to the exact value of  the denominator in 
this equation.) 

In order to derive an upper bound for/2,  an upper 
bound for the projected area, A, is needed. The 
projected area per n2 ring is clearly less than that 
of  a planar n2 polygon of  edge length l, viz 
(n212/4)cot(Tr/n2), so that 

A < (zl2/4)cot (~r/n2). (12) 

The inequality is due to the fact that average ring 
sizes are used to determine the average projected 
area, whereas the area function is nonlinear. Thus, 

/2 < (z12/4)cot (~r/n2)[1 - ((K)12/8)]. (13) 

Multiplying both sides by /2, noting that (K)/2 is 
fixed via the equation (K) /2=  f K d a  = 2rrx and is 
therefore known, and solving for /2  gives an estimate 
of  the upper bound: 

/2m~x = (A/2){ 1 + [1 - ((K)/21E/2A2)]l/2}, (14) 

where A is given by (12) and (K) /2=  2~r[z + ( 1 -  
z/2)n2]/n2. 

These expressions for /2mi. and /2max admit esti- 
mates of  the range of  accessible net densities as a 
function of  the average surface ring size, n2, and the 
connectivity of  the net, z, using (4), (9) and (14). The 
net data displayed in Table 1 (including embeddings 
that are not minimal) are plotted in Figs. 2(a), (b), (c) 
and (d) below, together with the plots of  the maxi- 
mum and minimum estimated densities [using /2min 
and f'~max in (4), respectively]. 

Validity of the analysis 

The equations above offer appropriate bounds on 
the density for most nets considered here. Provided 
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Fig .  2. (a)  P l o t  o f  ne t  d e n s i t y  ( 0 / h o m o g e n e i t y  i n d e x  ( H )  v e r s u s  

a v e r a g e  r ing  s ize  in the  e m b e d d i n g  sur face  (nz) f or  a r a n g e  o f  
t h r e e - c o n n e c t e d  n e t s  o f  e q u a l  e d g e  l e n g t h  ( T a b l e  1). T h e  d o t t e d  
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(14)  ( l o w e r  curve) .  T h e s e  c u r v e s  de f ine  u p p e r  a n d  l o w e r  b o u n d s  
o n  the  net  d e n s i t y  for  ' q u a s i - u n i f o r m '  nets  ( a p p r o x i m a t e l y  e q u a l  
v e r t e x  a n g l e s  a n d  sur face  r ing s izes) .  (b) P l o t  as  in (a) f or  
f o u r - c o n n e c t e d  nets .  (c)  P l o t  as  in (a)  f or  s o m e  f i v e - c o n n e c t e d  
nets .  (d) P l o t  as  in (a)  for  s o m e  s i x - c o n n e c t e d  nets .  
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the variation of surface ring sizes in the net is small 
and the net lies on a quasi-homogeneous embedding 
surface, the nets lie within the expected density 
limits. 

However, the lower bound for the density fails to 
account for some rare three- and four-connected nets 
discussed by O'Keeffe, namely the Y*3 and 4.122 
three-connected nets (O'Keeffe & Hyde, 1994), and 
the W*8 and W*4 four-connected nets (O'Keeffe, 
1991). These violations can be traced to the averag- 
ing procedure used to derive the equations for the 
most dense and rarest nets. A single measure of the 
net topology has been used; the average ring size of 
those tings lying in the surface.? The averaging 
underestimates the projected area per vertex, A, used 
to derive 12max above. Significant deviations from the 
flat area per vertex expected from (12) occur when 
some surface rings are small and others are large, i.e. 
as in the Y*3, 4.122, W*8 and W*4 nets. Calcula- 
tions show that this effect can double the area A (e.g. 
4- and 12-rings in a three-connected net) and the 
minimum density can be lower than that predicted 
here by a factor of three. In fact, this suggests a 
useful route to constructing rare nets, viz fusing 
small and large rings, already exploited by O'Keeffe. 
This effect is expected to be significant only for 
intermediate values of n2, since low n2 values cannot 
be sustained simultaneously with very different sur- 
face ring sizes, and high values lead to approximately 
linear behaviour in (12). Recall, also, that these 
bounds have been derived for quasi-uniform nets, viz 
equal edge lengths, vertex angles and torsion and 
ring sizes. 

The presence of a maximum in the curves defining 
the relations between minimum density and ring size 
(Fig. 2) is related to the possibility of embeddings 
other than the minimal embedding, discussed above. 
In general, at least two embeddings are possible 
(corresponding to 'complementary' surfaces, sharing 
the same network (Hyde & Andersson, 1984). 
Indeed, it is possible to construct embeddings for 
which all the rings in the net defined collar rings, in 
which case n2 diverges (and x / N  = - 1). The large n2 
limit of the lower curves in Fig. 2 must thus be 
vanishingly small. At the other extreme of Gaussian 
curvature O(/N = 0), the density must scale similarly 
to that of a planar net (i.e, increase with n2), These 
asymptotic forms imply the presence of at least a 
single maximum in the curve, as found. The location 
of the maximum is around average ring sizes of five. 
I suggest that the region of rare nets on the right- 
hand branch of this curve (i.e. n2 > 5) represents 

~f This average is a weighted one, since large rings 'see' more 
vertices than small rings. For example, a four-connected net, with 
rings (a, b, c, d) on the surface, gives a ring size of  n2 = 4/(a- ~ + 
b - l  + c-I  + d-I) .  

non-minimal embeddings, whose minimal em- 
beddings occur on the left-hand branch. 

The density of tectosilicates 

The trend of increasing density with surface ring size 
observed in minimal embeddings of silicon-rich 
zeolite frameworks (Hyde et al., 1993) is also fol- 
lowed by the nets considered here (Fig. 1). However, 
this relation is violated in some cases, as expected 
from the analysis plotted in Fig. 2, which shows that 
a range of densities are geometrically accessible when 
the average ring size of the framework becomes large 
(e.g. > 5 for four-connected frameworks). But the 
analysis above is strictly geometric in nature and 
extra constraints beyond those imposed by Euclidean 
three-dimensional space may be at work in chemical, 
frameworks. Framework densities of some silicates, 
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silicides, germanides and water frameworks suggest 
that the area per vertex,/2, varies little as a function 
of the framework curvature, for a fixed framework 
composition (Hyde, 1993). 

From O'Keeffe's (1991) network classification, the 
average surface ring size for the minimal embedding 
of any network containing equivalent vertices (or, 
alternatively, the characteristic of the network, y) 
can be readily determined (Hyde, 1993). The area per 
vertex, /2, can then be deduced from (4) and (7). 
Where more than one type of vertex is present in a 
net, upper and lower bounds on the average surface 
ring size can be found. Fig. 3 shows the area,/2, of a 
range of silicon-rich zeolites, clathrasils and dense 
silicates, using standard data for the framework den- 
sity, assuming a distance of 3.05/k between the 
T-atom vertices. With the exception of the densest 
four-connected silicate framework, coesite, the 
frameworks exhibit approximately equal area per 
vertex, regardless of the curvature of the framework. 

These data are plotted with the maximum and 
minimum areas found according to (9) and (14) in 
Fig. 4. Geometrical considerations alone allow the 
areas to vary between these limits, under the assump- 
tion of quasi-uniform networks. Clearly, the weak 
variation of surface areas with silica-framework 
curvature is not due to the geometry of Euclidean 
three-dimensional space. Rather, this effect must be 
set by interatomic interactions at work within these 
covalent frameworks. 

I thank Professor Michael O'Keeffe for many 
stimulating discusssions. 
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On the Validity of the Direct Phasing and Fourier Method in Electron Crystallography 
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Abstract 
The validity of the direct phasing and Fourier 
method for direct crystal structure determination is 
examined. It is shown that, while the kinematic 
approximation for electron diffraction is not strictly 
valid for all materials containing heavy atoms in real 
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space, many of the low-order diffracted beams 
behave kinematically for a small crystal thickness. 
For thin crystals, structure maps constructed from 
compound crystals containing heavy atoms using 
low-order reflections are found to be faithful rep- 
resentations of the crystal structures. The inclusion 
of high-order diffracted beams is shown, however, to 
introduce intensity maxima that do not coincide with 
atom positions. It is shown that, if dynamical phases 
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